);

Gas Booster Working and Operating Principle

How an Air Driven Gas Booster Works and Operating Principle

The Maximator booster’s operating principle is similar to a pressure intensifier. A large air piston is charged with low pressure (air piston (3)) and works on a small area with high pressure (hp piston (2)). The continuous operation is achieved by a pilot operated 4/2 way valve (spool (4)). The spool leads the drive air alternately on the upper and bottom surface of the air piston. The spool is piloted through two 2/2 way valves (pilot valves (7)) which are mechanically actuated through the air piston in its end positions. The pilot valves charge and discharge the spool chamber. The hp piston supported by the check valves (inlet check valve and outlet check valve (1)) delivers the flow. The outlet pressure is directly related to the set air drive pressure. According to the formulas indicated in the table with technical features of the boosters, the static end pressure can be calculated. At this pressure a force balance between drive section and gas section is achieved. The booster stalls when this end pressure is reached, and does not consume any further air. A pressure drop at the high pressure side or a pressure increase at the drive side starts the booster automatically until the force balance is achieved again. Additionally the MAXIMATOR boosters can be switched on and off automatically through MAXIMATOR air pilot switches, contact gauges or external control devices.

gas-booster-description
gas-booster-working

Here is an example of the differenses in design depending on whether the booster is a single stage or two stage and or if it is single acting or double acting:

gas-booster-comparison

Here is the Applications and General Uses of Air Driven Gas Boosters:

As a result of the wide range of models it is possible to select the optimum booster for each application. Single stage, double acting or two stage boosters or a combination of these models can be used to achieve different operating pressures and flow capacities.

Pressure Test With Gas

press-test-with-gas

Gas Transfer

gas-transfer

Gas Recovery

gas-recovery

Charging of Nitrogen Accumulators

n2-accumulator

Supply for Isolating Gas Systems

isolating-gas-sys

Gas Assisted Injection Molding

assisted-injection

Transfer of Oxygen Cylinders

o2-cylinder-transfer

Charging of Breathing Air Bottles

breathing-air-bottle

Leak Test

gb-leak-test