Gas Booster Systems - Frequently Asked Questions
How does a gas booster operate?
The operation of the Maximator gas boosters is similar to that of a pressure intensifier. Before the operation of the booster is explained, it is important to understand all the components of the booster system. This can be best understood with the help of a diagram.
The numbers given in the diagram correspond to the following components:
1. Compressor Head with Inlet and Outlet Check Valves
2. High Pressure Piston (HP Section)
3. Air Drive Piston or Section
4. Spool
5. Cooling Barrels
6. Muffler
7. Pilot Valve
2. High Pressure Piston (HP Section)
3. Air Drive Piston or Section
4. Spool
5. Cooling Barrels
6. Muffler
7. Pilot Valve
The following information explains the operating process of the gas booster.
1. A large air piston is first charged with a small amount of pressure using the air drive piston.
2. This is used to work on a small area using the HP section.
3. This is converted into a continuous operation with the help of the pilot valve. The spool conveys the drive air along the top and bottom surfaces of the air piston.
4. The spool is directed through two 2/2 way valves, which are mechanically driven via the air piston.
5. The pilot valves then fill and discharge the spool chamber.
6. The flow of the discharge is supported by the HP piston as well as the inlet and outlet check valves.
7. The outlet pressure is directly related to the set air drive pressure.
8. Depending on the booster model and features, the static end pressure can be calculated.
9. With the static end pressure, a balance of force between the gas and drive section is achieved.
10. Once the booster reaches the static end pressure, it stalls, and the consumption of air is suspended.
11. If a drop in pressure in the high pressure side, or an increase in pressure from the drive is noticed, the booster will start automatically. 12. This process will continue until the force balance is completely achieved.
1. A large air piston is first charged with a small amount of pressure using the air drive piston.
2. This is used to work on a small area using the HP section.
3. This is converted into a continuous operation with the help of the pilot valve. The spool conveys the drive air along the top and bottom surfaces of the air piston.
4. The spool is directed through two 2/2 way valves, which are mechanically driven via the air piston.
5. The pilot valves then fill and discharge the spool chamber.
6. The flow of the discharge is supported by the HP piston as well as the inlet and outlet check valves.
7. The outlet pressure is directly related to the set air drive pressure.
8. Depending on the booster model and features, the static end pressure can be calculated.
9. With the static end pressure, a balance of force between the gas and drive section is achieved.
10. Once the booster reaches the static end pressure, it stalls, and the consumption of air is suspended.
11. If a drop in pressure in the high pressure side, or an increase in pressure from the drive is noticed, the booster will start automatically. 12. This process will continue until the force balance is completely achieved.
What is the highest output pressure rating?
Maximator gas boosters are capable of reaching an output pressure up to 36,000 psi.
Is it possible for the drive air and the process gas to mix?
No. There is a barrier between the two sections, which prevents the air and gas from combining.
Do gas boosters compress shop air or bottled gas at higher pressures?
Maximator gas boosters are capable of increasing gas supply pressures in applications where high pressures are required. They are the ideal solutions for applications such as amplifying shop air, boosting gas pressures of oxygen and nitrogen generators, and reclaiming low pressure gas from bottles.
How do I control discharge pressure?
Discharge pressure can be controlled by simply altering the air drive pressure to the ratio of the pump. For example, if a customer is using a booster with 100 psi of air at a 75:1 ratio, the outlet pressure will be calculated as 75 x 100. Thus the outlet pressure would be 7,500 psi.
What is the operating life of a gas booster system?
There is no accurate way to measure the operating life of a gas booster. If the customer uses the booster according to the operating instructions, and follows the maintenance procedures, then the gas booster can easily last for years.
What drive air quality is required?
This is an important point as it directly concerns the effective operation of the booster. The quality of the drive air should be clean and unpolluted. The better the air quality, the longer will be the operating life of the booster.
How do I determine when maintenance is required?
Maximator recommends that maintenance should be performed in regular intervals. There are certain criteria, which need to be met before maintenance can take place. The following points will help a user determine when maintenance is required. They also provide information of the different types of maintenance procedures, which can be carried out at a particular time.
1. Every 20,000 strokes or every 3 months (Leak, valve, and O-ring inspection and lubrication)
2. Every 6 months (Replacement of oxygen and air filters)
3. Every 12 months (Pressure testing, booster and valve cleaning, valve)
4. Other options include:
a. Over 500-1000 work hours
b. 2,000,000 strokes
c. Every 18 months
1. Every 20,000 strokes or every 3 months (Leak, valve, and O-ring inspection and lubrication)
2. Every 6 months (Replacement of oxygen and air filters)
3. Every 12 months (Pressure testing, booster and valve cleaning, valve)
4. Other options include:
a. Over 500-1000 work hours
b. 2,000,000 strokes
c. Every 18 months
Why do gas boosters fail?
There are a few general reasons for the failure of gas boosters. These include:
1. Polluted air
2. Low level of gas pressure
3. No gas being directed to the booster
4. Contaminated gas
1. Polluted air
2. Low level of gas pressure
3. No gas being directed to the booster
4. Contaminated gas
What is the difference between an Air and Gas Booster?
The primary difference between these two equipment is the protective barrier. Air boosters are designed without a barrier between the air drive and gas compression section. A gas booster has a barrier installed between the two sections to prevent cross contamination.
Is there a way to reduce downtime when a booster system needs maintenance?
There are three basic ways in which the booster system’s downtime can be reduced before maintenance:
1. The simplest solution is to always use clean, unpolluted air for the gas booster’s operation.
2. The customer can use the gas booster for low duty work cycles.
3. The gas booster should be used periodically, rather than on a daily basis.
1. The simplest solution is to always use clean, unpolluted air for the gas booster’s operation.
2. The customer can use the gas booster for low duty work cycles.
3. The gas booster should be used periodically, rather than on a daily basis.
What are the common applications for gas pressure booster systems?
Gas boosters are commonly used for applications such as bottle transfer, accumulator filling, and pressure testing.
What is included in a Gas Booster Package?
Maximator offers two types of gas booster packages – oxygen and nitrogen gas packages. In addition to these, the organization also provides air control packages. The details of the packages are given below.
Oxygen Gas Booster Packages:
These packages are ideal for applications such as aircraft and bottle filling. Maximator offers two oxygen gas booster packages. Model MTO2-2-DLE30-1 is designed as a single acting oxygen booster. MTO2-2-DLE30 is a double acting oxygen booster, which is designed for high flow rates.
General features of these packages include:
1. Sterile stainless steel components for oxygen service.
2. The boosters provide contaminant free operation. This is achieved by separating and isolating the air drive and oxygen sections.
3. They only require a 70 psi shop air source for operation. Thus, the need for electrical power is eliminated.
4. Booster automatically shuts down once the desired outlet pressure is reached.
5. Safety relief devices and pressure gauges are included in both gas and air sections.
6. Manual vent valve is provided for discharging gas pressure prior to disconnecting the outlet line.
7. Drive air filter and shut-off ball valve are also provided to manually stop the booster.
8. Drive air connection is 1/2ʺ FNPT.
9. Oxygen gas inlet and outlet connections are 1/4ʺ FNPT.
10. Prior to delivery shipments, all the booster components are mounted to the booster and tested for efficacy.
Nitrogen Gas Booster Packages:
These packages are capable of boosting air, nitrogen and select gases in pressures up to 4,400 psi. They are used for applications such as tire filling, pressurizing shock struts, charging hydraulic accumulators, and boosting pressures from nitrogen generators. Maximator offers nitrogen gas booster packages in two types – pressures up to 2,200 and 4,400 psi.
1. 2,200psi:
a. Single Acting/Air Driven MTNB3-DLE30-1
b. Double Acting/Air Driven MTNB3-DLE30
c. Single Acting/Nitrogen Driven MTNB3-DLE30-1-DASR
d. Double Acting/Nitrogen Driven MTNB3-DLE30-DASR
2. 4,400 psi:
a. Single Acting/Air Driven MTNB4-DLE75-1
b. Double Acting/Air Driven MTNB4-DLE75
c. Single Acting/Nitrogen Driven MTNB4-DLE75-1-DASR
d. Double Acting/Nitrogen Driven MTNB4-DLE75-DASR
Air Control Packages:
These packages comprise a filter, gauge, regulator, ball valve, and pilot port connection. They can also be modified with fittings as required by the client. Maximator can be used with the following products:
1. AC for all S pumps
2. ACG for all GX pumps
3. ACM for all PPO, PP and PPSF pumps and MPLV2 air amplifiers
4. ACP for all L, LSF pumps, DLE gas boosters, and DLA and GPLV2 amplifiers
Oxygen Gas Booster Packages:
These packages are ideal for applications such as aircraft and bottle filling. Maximator offers two oxygen gas booster packages. Model MTO2-2-DLE30-1 is designed as a single acting oxygen booster. MTO2-2-DLE30 is a double acting oxygen booster, which is designed for high flow rates.
General features of these packages include:
1. Sterile stainless steel components for oxygen service.
2. The boosters provide contaminant free operation. This is achieved by separating and isolating the air drive and oxygen sections.
3. They only require a 70 psi shop air source for operation. Thus, the need for electrical power is eliminated.
4. Booster automatically shuts down once the desired outlet pressure is reached.
5. Safety relief devices and pressure gauges are included in both gas and air sections.
6. Manual vent valve is provided for discharging gas pressure prior to disconnecting the outlet line.
7. Drive air filter and shut-off ball valve are also provided to manually stop the booster.
8. Drive air connection is 1/2ʺ FNPT.
9. Oxygen gas inlet and outlet connections are 1/4ʺ FNPT.
10. Prior to delivery shipments, all the booster components are mounted to the booster and tested for efficacy.
Nitrogen Gas Booster Packages:
These packages are capable of boosting air, nitrogen and select gases in pressures up to 4,400 psi. They are used for applications such as tire filling, pressurizing shock struts, charging hydraulic accumulators, and boosting pressures from nitrogen generators. Maximator offers nitrogen gas booster packages in two types – pressures up to 2,200 and 4,400 psi.
1. 2,200psi:
a. Single Acting/Air Driven MTNB3-DLE30-1
b. Double Acting/Air Driven MTNB3-DLE30
c. Single Acting/Nitrogen Driven MTNB3-DLE30-1-DASR
d. Double Acting/Nitrogen Driven MTNB3-DLE30-DASR
2. 4,400 psi:
a. Single Acting/Air Driven MTNB4-DLE75-1
b. Double Acting/Air Driven MTNB4-DLE75
c. Single Acting/Nitrogen Driven MTNB4-DLE75-1-DASR
d. Double Acting/Nitrogen Driven MTNB4-DLE75-DASR
Air Control Packages:
These packages comprise a filter, gauge, regulator, ball valve, and pilot port connection. They can also be modified with fittings as required by the client. Maximator can be used with the following products:
1. AC for all S pumps
2. ACG for all GX pumps
3. ACM for all PPO, PP and PPSF pumps and MPLV2 air amplifiers
4. ACP for all L, LSF pumps, DLE gas boosters, and DLA and GPLV2 amplifiers
Do you supply spare parts for the Booster?
High Pressure Tech provides all spare parts to meet the repair and maintenance of gas boosters. We also provide complete kits to meet this need.
What accessories are available for Gas Boosters?
High Pressure Technologies provides a wide range of accessories for repair, maintenance, and performance enhancement purposes. These include:
1. Gauges
2. Relief Valves
3. Cycle Counters
4. Timer Devices
5. Gas Receivers
6. Dry Air Spools
7. Ultra High Pressure Pneumatic Actuated Needle Valves
8. Stainless Steel Reservoirs
9. Air Receiver Tanks
10. High Pressure Data Loggers
11. Air Control Packages
12. Air Valve Actuators
13. Pneumatic Pilot Switches
14. Carbon Steel-painted Reservoirs (in gallons)
1. Gauges
2. Relief Valves
3. Cycle Counters
4. Timer Devices
5. Gas Receivers
6. Dry Air Spools
7. Ultra High Pressure Pneumatic Actuated Needle Valves
8. Stainless Steel Reservoirs
9. Air Receiver Tanks
10. High Pressure Data Loggers
11. Air Control Packages
12. Air Valve Actuators
13. Pneumatic Pilot Switches
14. Carbon Steel-painted Reservoirs (in gallons)
Is it better to run the Gas Booster continuously or to switch it on and off?
There is no ideal answer to this query. This performance of the gas booster depends greatly on how the customer uses it. Generally, how long the booster should run before being switched off depends on the amount of time the booster is sitting idle.
What are the noise levels produced by the Gas Boosters?
Noise levels of the gas booster may vary depending on its installation and use. Maximator has conducted noise emission measurement tests, where the booster was measured with 10 bar counter-pressure at full load operation. This test was conducted at different heights and distance from the test stand. The general value of the noise level is 81 dB(A).